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INTRODUCTION/MOTIVATION 

Anode current of field electron emission (FE) triode is a function of two variables: voltage 

Ug between cathode and gate and voltage Ua between cathode and anode, i.e. Ia = f(Ug, Ua). 

Important characteristics of triode operation in static mode [1] are the following differen-

tial parameters: slope of Sa value, which is equivalent to conductivity of an alternating cur-

rent  
 

 

and the internal resistance Ri of the alternating current. The latter is an inverse of the slope 

characteristic in a diode, and for a triode it is defined as the ratio between anode voltage 

and anode current for constant gate voltage.  

The gain of the triode to the anode current µ shows how many times stronger the gate po-

tential affects the cathode current than the anode potential. The gain depends on the distri-

bution of space charge:  

 

 

The permeability of the gate D characterizes the penetration of the electric field through 

the gate of the anode to the cathode. Permeability is numerically equal to the ratio of 

charges induced on the cathode by the anode and by the gate, in the absence of current in 

the triode. It follows that the permeability depends on the geometry of the electrodes. The 

permeability of the gate D is expressed through the gain µ from the equation µ ≈ 1/D 

(when Ug < 0). 

Multiscale simulation of FE triode nanostructures under the study implies: 

(A) Treatment as ideal FE device/system [2], when simulated emission characteristics are 

determined only by the geometry (smooth at microscale) of the system and the physics of 

emission from a surface that has fixed unchanging shape and a work function that does not 

vary significantly with local surface field or with emission current density.  

(B) Treatment as non-ideal device/system due to current dependence in field enhancement 

factor (FEF) taking into account the complex geometry of surface at nanoscale, when in-

creasing of field strength the effective FEF decreases [3]. 

LITERATURE DATA 

Table I shows literature data on experimentally measured values of triode differential pa-

rameters or volt-ampere characteristics from which those values have been derived by for-

mulas above. So this table presents a comparative study of various triode FE structures on 

the basis of an analysis of their differential parameters in the static mode of operation in an 

external electric circuit, both from experimentally measured current-voltage characteristics 

and from simulation results [4-19]. 

METHODS OF SIMULATION 

Methods of mathematical and computer simulation in case (A) are based on a current func-

tion that is analogous to one used in hydrodynamics [20]. Finite-element method over a 

non-uniform mesh is used for electric field calculations and algorithms in Matlab PDE 

Toolbox and Comsol Multiphysics are implemented. 

In case (B) mathematical model of nanostructured FE surface is implemented in the DAISI 

(Design of Accelerators, optImizations and Simulations [21]) with electrostatic and electro-

magnetic particle in cell methods, it allows to compute electric field on the rectangle mesh 

with good accuracy even for difficult geometry of computational domain. Deficiency of 

accuracy in extrapolation of difficult domain geometry by rectangle mesh is compensated 

by using cut cells method. The obtained result accuracy is not worse than the result accura-

cy using Comsol [22]. Modification has been performed, allowing simulations of devices 

in the FE mode with user defined initial energy distribution, because silicon carbide 

nanostructures under the study have bimodal energy spectra (see IVeSC 24 presentation). 

Table I. FE triode differential parameters in static mode for various structures. 

Fig. 1. Metal structures under 

the study: a) cell of a field 

emitters array with a cylindri-

cal blade structure of vertical 

type [23]; b) image of edge-

relief in SEM and after digital 

processing and pointing out ge-

ometrical non-homogeneities 

[3]; c) FE characteristics meas-

ured in diode configuration 

used for FEF estimation of 

emission surface in triode con-

figuration. 

Fig. 2. Silicon carbide struc-

tures under the study: 

a) SEM image of linear blade 

triode structure [24]; b) SEM 

image of cylindrical blade 

structure [25]; c) FE array 

with cone-shape emitters 

[26]. 

Fig. 3. Results of ideal device/system simulation in case (A) for cone-shape emitters 

triode: a) internal resistance and slope of anode volt-ampere characteristic vs anode-

gate distance; b) triode gain and gate permeability vs anode-gate distance. 

Fig. 4. Results of non-ideal device/system simulation in case (B) for cylindrical blade-

shape emitters triode: a) current dependence in FEF, dependent on apex field; b) anode-

gate characteristics at various anode voltages for two initial energy distributions: Max-

well’s and bimodal spectra. 

CONCLUSION 

FE micro- and nanotriodes possess static differential parameters that are significantly 

(by orders of magnitude) different from the same characteristics of conventional elec-

tron lamps based on thermionic emission. Due to miniaturization and FE, using for gen-

erating of electron current in vacuum nanoelectronics triode structures, increasing the 

transconductance is an obvious necessity; additionally, transconductance plays an im-

portant role in high-frequency mode of triode devices operation.  
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