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Introduction
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Vacuum interrupters

 outstanding insulation properties

 simple design, small number of components 

 environmentally friendly operation – zero emission (no harmful gases, no light 
emission, no waste products)

 maintenance-free

High-current operation

 strong electrode melting and evaporation

 measures of for reduction of thermal load necessary

 use of magnetic filed for arc control

Two basic operation principles 

 radial magnetic field (RMF) contacts: arc rotation over the electrode surface 
(constricted arc)

 axial magnetic field contacts (AMF):  expansion of the arc column over most of the 
electrode surface (diffuse arc motion, and thereby the performance of the contacts. 



Introduction: vacuum interrupter design

Terminal disc 

Insulator (ceramics) 

Arcing chamber made of copper

Fixed contact

Movable contact

Metal bellows

Operating and connecting bolt



Introduction: vacuum arc controlled by magnetic fields

The contact geometry & magnetic field creation have a decisive influence on the switching capacity 
of a vacuum interrupter. Various contact geometries are used depending on the current & voltage 
ratings.

Axial magnetic field contact (AMF) Radial magnetic field contact (RMF)

Contact plate

Diffuse
Arcing

Switching 
element carriers

Contact disk

Rotation of a
constricted Arc



Motivation
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Open questions

 Influence of initiation behavior of the drawn arc on

 arc motion

 arc characteristics during the active phase

 post-arc parameters 

Focus on
 arc dynamics

 anode surface temperature after current interruption

 neutral vapor density after current zero crossing



Experimental setup: model vacuum interrupter
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commercial vacuum interrupter

 Typical volume  0.5 l

 Stroke 5 – 20 mm

 Operation velocity 0.5 - 2 m/s

model vacuum interrupter

 Volume 52 l

 Mountings for various electrodes

 Stroke 5 - 25 mm

 Operation velocity 0.5 - 4 m/s



Experimental setup: electrodes
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type A 

 CuCr 60/40, ∅ 34 mm

 Defined ignition positions on movable electrode (cathode)

 Two distinguished positions – close outer boundary and close to the center

type B 

cathode 

anode 



Experimental setup: diagnostics

NIR opticsHigh-speed
camera, arc
dynamics NIR spectrometer

Xe flash lamp

2x high-speed
cameras with filter

0.75 m Spektrograph

 Broad use of optical diagnostics: non-invasive methods, quantitative characterization 
of arc plasma and electrode surface



Results: electrodes conditioning
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electrical signals 

 Diffuse arc at pulsed DC operation, 20 ms, 430 A, 10 shots

 Control over the shape of voltage curve and pressure increase inside the chamber after 

the shot – ca 2×10-5 mbar after 1st shot, ca 2×10-6 mbar after 10th shot (measured at 

the instant of 20 seconds after shot)
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Results: arc dynamics
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• Ignition at desired position (outer boundary, type A)
• Arc movement starts after appearance of an anode spot and arc constriction
• 2 rotations per ms at present experimental conditions
• Longer residence time in central part of electrode in case of ignition position B

diffuse arc diffuse arcmoving constricted arc

contact
separartion

constriction



Results: arc dynamics
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Acquisition with narrow-band filter (MIF, 1 nm FWHM) 521 nm (Cu I) and 494 nm (Cu II)

Cu II Cu I

 Focus on distinguishing between ion and atom dynamics



Results: arc dynamics
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Cu II

Cu I

• Pronounced differences in spatial distribution of atoms and ions



Results: arc dynamics
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 Higher atomic line radiation intensity at the beginning

 Increasing intensity of ionic lines with progressing time 

 Localization of atomic line radiation in the broader regions close to the electrode surface

 However, no differences between studied ignition positions found 

4.3 ms 6.7 ms

Cu I

Cu II 
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Results: anode surface temperature 
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Hot plasma!

+ =

NIR 900-1600 nm
NIR optics

acquisition times

measuring point
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Cold plasma!
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Signal from surface

 Evaluation of NIR spectra emitted by hot electrode surface
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Results: anode surface temperature
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W strip lamp
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Results: anode surface temperature
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 Initial temperature in the range between 1200 K and 1400 K

 Higher temperature at longer arc duration

 Higher temperature in case of position A probably due to higher total residence time of the arc at 
this position
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Results: vapour density
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Principle of absorption spectroscopy

 Light source and detector

 Optical thickness

 Density of absorbing species
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Results: vapour density
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Results: vapour density
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 Slow density decay within first 400 µs after current interruption

 Higher chromium density in case of longer arc duration

 Higher chromium density in case of position A due to higher anode surface temperature
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Summary
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 Clear influence of initiation behavior of the drawn arc on arc parameters was found

 Higher electrode temperature in case of the electrodes with position A (ignition point near 

the outer boundary of the electrode) 

 Consequently higher density of chromium vapor, even though the arc duration was 

longer. 
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Optical diagnostics: advantages and disadvantages
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 Clear advantages of optical methods
 non-invasive
 qualitative and quantitative measurements possible
 high spatial resolution  – local properties 
 high temporal resolution – dynamics 
 applicable in a wide parameter range due to variability of methods 

 Some disadvantages  of optical measurements
 optical access to the object  necessary
 radiation intensity must be sufficient
 distortions in the optical pathway through hot fluxes and plasma itself 
 costs of the devices, complex apparatus and evaluation methods
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