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Pharmaceuticals in the Aquatic Environment

Rx

+

 In Germany alone, 9,600 to
12,800 tons of unused
pharmaceuticals are disposed
of or flushed down the toilet
yearly [1]

 Their presence in effluents have
been linked to ecological
toxicity [2], antimicrobial
resistance [3], endocrine
disruption, and gradual 
reduction of fertility [4,5]
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Figure 1. Main sources of pharmaceuticals in the aquatic environement.
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Pharmaceuticals in the Aquatic Environment

? 

The Problem:
Pollutants of low-
level toxicy which

cannot be
degraded by
traditional 
methods

The Solution:
Low energy EB

Treatment

! 

Figure 2. Concentration of micropollutants before and after conventional wastewater treatment. 
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The Problem with Low-Energy Electrons

Figure 3. Penetration depth of accelerated electrons according to their energy and density of the absorber (left). 
Window foil and separating gap are sources of losses in low-energy EB processes (right) [9].
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Hybrid Wastewater Treatment

By combining low energy EB and ozone: 

The demands on radiation protection are kept to a minimum

Low EB source dimensions and costs

An economic, flexible and compact treatment module is realized

$

The irradiation of water produces several highly reactive, oxidizing and reducing radical species [10]:

𝐻2𝑂
𝐸𝐵
𝑂𝐻 ∙, 𝑒𝑎𝑞

−, 𝐻 ∙, 𝐻2, 𝐻3𝑂
+, 𝐻2𝑂2 (1)
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Experimental Device

Figure 4. Treatment module (left) and treatment module inside REAMODE (right).
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Substance Irradiation

Rx Rx
Rx

Pharmaceutical “cocktail” of five select substances in 
deionized (DI) water and synthetic wastewater

were mixed

Cocktail was treated using treatment module

Concentration of substances before and after 
treatment determined using high-performance liquid 

chromatography 
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Substance Irradiation

Figure 5. EB Facility REAMODE.

Irradiation done at Fraunhofer FEP’s electron beam facility REAMODE 
with the following parameters:

 Maximum electron energy 200 keV
 Irradiation current 0.1-4 mA and 2 mA (multiple passes)
 Volume flow 4 l/min
 Gas flow 2 l/min
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Substance Irradiation

Figure 6. Pharmaceutical cocktail after irradiation.
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Substance Irradiation

Figure 7. Relative concentration vs dose for five substances in 
DI-water and synthetic wastewater.

Significant degradation (>80%) achieved
already at 2.2 kGy for all substances in
deionized water and synthetic wastewater.

PUBLIC



- Informationsklassifizierung -

Results

29.08.2024 © Fraunhofer FEPSeite 11

Substance Irradiation

Substance Deionised Water Synthetic Wastewater

Bisphenol A 0.1 kGy 0.6 kGy

Sulfamethoxazole 0.1 kGy 0.6 kGy

Valsartan 0.2 kGy 1.1 kGy

Gabapentin 1.1 kGy 1.1 kGy

Iomeprol 2.2 kGy 2.2 kGy

Table 1. Doses at which significant degradation (>80%) is achieved for five select substances
in deionised water (DI) and synthetic wastewater (SW). 
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Comparing Wastewater Treatment Methods

Powdered Organic Carbon (PAC)

10-40 mg/l

• 0.020-0.035 kWh/m3 for adsorption step [11]

• 0.45 kWh/m3 for whole process [12]

Ultraviolet (UV) Treatment

7200 J/m2

• 0.026 kWh/m3 for irradiation step [13]

• 0.5-1 kWh/m3 for whole process [12]

EB + Ozone

2.2 kGy

• 0.003 kWh/m3 for irradiation step

Energy Demands of Different Wastewater Treatment Methods
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Comparing Wastewater Treatment Methods

Table 2. Measured removal efficiencies with EB and ozone for 5 select substances in synthetic wastewater compared to
traditional methods: powdered organic carbon (PAC) and ultra-violet (UV).

Substance
EB + O3

(2.2 kGy)

EB + O3

(11 kGy)
PAC [14] UV [14]

Bisphenol A 97.1% > 99.0% 5.3% 67.0%

Iomeprol 49.7% > 99.7% 65.0% 65.0%

Sulfamethoxazole 99.8% > 99.9% 31.0% 81.0%

Gabapentin 56.0% > 99.9% 41.0% 2.0%

Valsartan 68.6% > 99.8% 99.0% 5.0%
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Figure 8. Degradation pathway of Iopromide. Taken from Jeong et al. [15].

The problem with degradation by-products:
Among other examples, 30 different degradation 
by products are formed from the transformation 
of Iopromide by advanced oxidation processes 
(AOP) [16].

Work in Progress
Testing Biodegradability
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Testing Biodegradability

Meet Daisy, FEP‘s Laborkläranlage!

• The presence of numerous degradation 
by-products highlights the need for a 
biodegradability test

• Degradability is measured by taking
chemical oxygen demand (COD) 
measurements

• 70% degradation = inherent ultimate
biodegradability

Aeration

vessel

Settling vessel
Agitator

Dissolved

oxygen
controller

Figure 9. Laboratory scale wastewater treatment plant.
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The hybrid treatment of
EB + Ozone successfully

degraded five select
pharmaceuticals in DI 
water and synthetic

wastewater

Analysis of degradation
byproducts and their

fate in further
wastewater treatment
and the environment is

needed

An upscaling of the 
concept and expansion of 

its field of application 
must be developed
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Substance Medium RE (2,2 kGy) RE (11 kGy)

Bisphenol A
DI > 98,7% > 98,7%

SW 97,1% > 99,0%

Iomeprol
DI 84,8% > 99,8%

SW 49,7% > 99,7%

Sulfamethoxazole
DI > 99,9% > 99,9%

SW 99,8% > 99,9%

Gabapentin
DI 89,3% > 99,9%

SW 56,0% > 99,9%

Valsartan
DI 96,4% > 99,8%

SW 68,6% > 99,8%

Table 3. Removal efficiencies for 5 select substances in deionised water (DI) and synthetic
wastewater (SW). 
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