

Bachelor / Master Thesis

In-situ dielectric characterization of redox materials for plasma gas-conversion experiment

Motivation

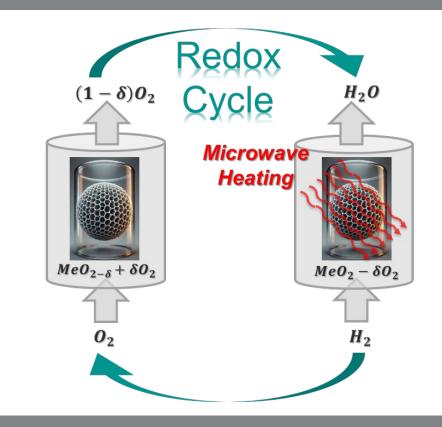
In the framework of research focus "Power-to-Molecules" we are exploring promising technologies such as microwave sustained plasmas for chemical reduction of carbon dioxide. To take an oxygen away from reaction products material looping in plasma afterglow is utilized.

Task description

Design and development of a microwave system for the in-situ dielectric measurement based on the cavity perturbation method. It will be used for the dielectric characterization of redox reactions in inorganic materials (e.g. catalysts) as a function of temperature and chemical conversion, that are used in plasma gas conversion experiments. The tasks to be addressed are:

- Microwave resonator design & development (2.4-2.5 GHz band)
- Integration of network analyzer, temperature sensors (e.g. IR pyrometer) and mass-flow controller(s)
- GUI (Matlab/LabView) development for operation and control

Requirements


- · Basic knowledge of high frequency technology
- Ideally experience with CST Microwave Studio

Dr. Sergey Soldatov

Gebäude 0421, Zimmer 209b E-Mail: Sergey.Soldatov@kit.edu

Telefon: 0721-608 24330

