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ABSTRACT 
 
The main application for vacuum interrupters (VI) is in electrical power systems at frequencies of . Other 
applications at different  include rail electrical power systems that run at  and . VI worked 
successfully in these applications for many years. Green energy applications such as wind turbines, pumped storage, DC to 
AC converters in solar parks and shipboard applications can generate temporary fault conditions with very low frequencies. 
Low frequency applications generate very long arcing times and high transferred charge, making current interruption at the 
current zero (CZ) difficult. This work calculates the interruption performance boundary to frequencies between  
based on the test performed at  and .  The contact erosion rates were also grouped into three different 
situations as a function of the current, and the erosion during multiple short-circuit operations from  at 

 and at several hundred of amperes at . Test sequences from the generator circuit breaker standard are also 
examined, such as delayed CZ and very high direct current (DC) offset tests.  These tests are effectively equivalent to lower 
frequency tests.  Finally, experiments were performed at  at  to observe the impact of multiple 
switching operations on the contacts, metal vapor deposit on the ceramics, and heat build-up in VI.  Three different contact 
systems and sizes were tested. 
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